

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2007-2010

www.elsevier.com/locate/jeurceramsoc

Mixture behavior and microwave dielectric properties of $(1 - x)Ca_2P_2O_7-xTiO_2$

In-Sun Cho, Sang-Ku kang, Dong-Wan Kim, Kug-Sun Hong*

School of Materials Science & Engineering, College of Engineering, Shinrim-dong, san 56-1, Kwanack-ku, Seoul 151-742, Korea

Available online 15 November 2005

Abstract

 $(1 - x)\beta$ -Ca₂P₂O₇-*x*TiO₂ were prepared by solid-state reaction. The mixture behavior and microwave dielectric properties were investigated using X-ray powder diffraction and a network analyzer, respectively. X-ray powder diffraction patterns showed that β -Ca₂P₂O₇ and TiO₂ existed in a mixture form, which was also confirmed by SEM analysis. It was shown that TiO₂, which has positive temperature coefficient of the resonant frequency (τ_f), compensated the negative τ_f of β -Ca₂P₂O₇ (-53 ppm/°C) through mixture formation. The variation of dielectric properties with a function of TiO₂ contents could be explained using mixture rule. In the 0.3 < *x* < 0.4 regions, τ_f value could be successfully reduced almost zero. In particular, at *x* = 0.3, good microwave dielectric properties was obtained: $Q \times f = 44,000$, $\varepsilon_r = 10.9$, and $\tau_f = -11$ ppm/°C. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Inclusions; Dielectric properties; TiO2

1. Introduction

With the rapid development of modern microwave communication system, such as mobile telephone, high quality microwave dielectric ceramics have been attracted by much scientific and commercial attention. For microwave substrate application, materials should have a low dielectric constant (ε_r) less than 10 and low temperature coefficient of resonant frequency $(\tau_{\rm f})$. Such as Al₂O₃ and rare-earth aluminates^{1,2} have been investigated for substrate application. Recently, pyrophosphate Ca₂P₂O₇ compound with dichromate structure was reported for microwave substrate application by Bian et al.³ Although this materials exhibit good microwave dielectric properties, $Q \times f = 53,500 \text{ GHz}, \varepsilon_r = 8.3$, it is need to tune the temperature coefficient of resonant frequency to near-zero because of some large negative temperature coefficient of resonant frequency $(\tau_{\rm f} = -53 \, \rm ppm/^{\circ}C)$. The most popular method of tuning the $\tau_{\rm f}$ value involves mixing two or more compositions with different $\tau_{\rm f}$ value. A typical example is found in the (Mg, Ca)TiO₃ system.⁴ CaTiO₃ has a large positive τ_f , while the τ_f of MgTiO₃ is negative. By combining the two components, a near-zero $\tau_{\rm f}$ value can be obtained.

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.050 In the present study, β -Ca₂P₂O₇ ceramics was mixed with TiO₂ (τ_f = +400 ppm/°C) in order to control the τ_f value. The effects of TiO₂ addition on the mixture formation and microwave dielectric properties of β -Ca₂P₂O₇ ceramics were reported. The variation of dielectric properties with a function of TiO₂ volume fraction could be explained by mixture rule.

2. Experimental

High purity CaCO₃ (99.9%), $(NH_4)_2$ HPO₄ (99%) and TiO₂ (99.9%) were used as raw materials. Ca₂P₂O₇ powders were prepared using conventional mixed oxide method. CaCO₃ and (NH₄)₂HPO₄ were mixed using ball-mill and the mixture was calcined at 1000 °C for 2 h. Mixtures of Ca₂P₂O₇ and TiO₂ powders of varying composition were ball-milled in a polyethylene bottle with ZrO_2 balls for 24 h using ethanol as a medium. The milled powders were dried, granulated and pressed at 1000 kg/cm^2 to form pellets 10 mm in diameter and 4 mm thick. The pellets were sintered at 1100–1200 °C for 2 h with a heating rate of 5 °C/min. The phase constitution of the sintered sample was identified by X-ray powder diffraction (XRD: Model M18XHF, MacScience Instruments, Japan) in the 2θ range of $20-60^{\circ}$. The bulk density of the sintered specimens was evaluated by Archimedes' method. The microstructure analysis of the sintered samples was examined using scanning electron microscopy (SEM: Model JSM-5600, JEOL, Japan).

^{*} Corresponding author. Tel.: +882 880 8024; fax: +882 886 4156. *E-mail address:* kshongss@plaza.snu.ac.kr (K.-S. Hong).

The microwave dielectric properties of the sintered samples were measured using a network analyzer (Model HP8720C, Hewlett Packard, USA) in the frequency range of 8–12 GHz. The quality factor ($Q \times f$) was measured by the transmission cavity method using a Cu cavity and a Teflon supporter.⁵ The dielectric constant (ε_r) was measured using the post-resonator method and the temperature coefficient of the resonant frequency (τ_f) was measured using an Invar cavity in the temperature range of 20–80 °C.

3. Results and discussion

3.1. Mixture formation of $Ca_2P_2O_7$ -Ti O_2

Fig. 1 shows the X-ray diffraction (XRD) profiles of the $(1-x)Ca_2P_2O_7-xTiO_2$ samples for various values of *x*. With increasing TiO₂ content, the intensity of the reflections of $Ca_2P_2O_7$ phase decreased and those of TiO₂ phase increased. At the region of $x \le 0.4$, all samples were mixture of β -Ca₂P₂O₇ and TiO₂ without any observable formation of a second phase. But at $x \ge 0.5$, secondary phase reflection around 31.1° was appeared. We could not identify the secondary phase because of peak overlapping with Ca₂P₂O₇ reflection.

Fig. 2 shows SEM photographs of $0.7Ca_2P_2O_7-0.3TiO_2$ sample sintered at 1120 °C for 2 h. There were two different shapes of grains, rounded and elongated shape. From EDS spectra in Fig. 2(a) and (b), it was found that $Ca_2P_2O_7$ (x=0) had rounded grains while TiO₂ exhibited elongated grains. In the $0.7Ca_2P_2O_7-0.3TiO_2$ sample, a heterogeneous microstructure with both rounded and elongated grains formed, which was in agreement with the XRD results. These results indicate that

Fig. 2. SEM photograph and EDS spectra of $0.7Ca_2P_2O_7-0.3TiO_2$ sintered at $1120 \degree C$ for 2 h. (a) A phase: $Ca_2p_2O_7$, (b) B phase: TiO_2 .

the formation of a mixture in $(1 - x)Ca_2P_2O_7-xTiO_2$ samples, because the end members, $Ca_2P_2O_7$ and TiO_2 , have distinct microstructural shapes.

3.2. Microwave dielectric properties of $Ca_2P_2O_7$ -Ti O_2

3.2.1. Relative dielectric constant

The relative density (ρ) of $(1 - x)Ca_2P_2O_7-xTiO_2$ ceramics was shown in Fig. 3, as a function of TiO₂ volume fraction. The theoretical densities (ρ_{th}) of the $(1 - x)Ca_2P_2O_7-xTiO_2$ ceramics were obtained from

$$\rho_{\rm th} = \frac{(W_1 + W_2)}{(W_1/r_1 + W_2/r_2)}$$

where W_1 and W_2 are the weight fractions of Ca₂P₂O₇ and TiO₂ in the mixture, respectively. ρ_1 and ρ_2 represent the densities of Ca₂P₂O₇ and TiO₂, respectively. In Fig. 3, all samples had relative theoretical density (ρ) of more than 95%. Because the sintering temperature of TiO₂ is higher than Ca₂P₂O₇ about 200 °C, the relative density (ρ) of (1 – *x*)Ca₂P₂O₇–*x*TiO₂ samples sintered at 1120 °C have tendency to decrease as increasing TiO₂ content.

The effect of porosity on the dielectric constant was eliminated by applying the Bosman and Havinga's correction,⁶ shown

Fig. 3. Relative theoretical density of $(1 - x)Ca_2P_2O_7 - xTiO_2$ samples sintered at 1120 °C for 2 h, as a function of volume fraction of TiO₂.

in Eq. (1), which can be used for dense ceramics having porosity lower than 5%:

$$\varepsilon_{\rm r, \, corrected} = \varepsilon_{\rm r, \, measured}(1+1.5P),$$
 (1)

where $\varepsilon_{r, \text{ corrected}}$ and $\varepsilon_{r, \text{ measured}}$ are the corrected and measured dielectric constant, respectively, and *P* is fractional porosity. Fig. 4 shows the measured and corrected dielectric constant of $(1 - x)Ca_2P_2O_7 - xTiO_2$ samples sintered at 1120 °C for 2 h, as a function of TiO₂ volume fraction. The measured dielectric constant ($\varepsilon_{r, \text{ measured}}$) increased with increasing TiO₂ content, which has large dielectric constant content ($\varepsilon_r = 105$). At a composition of x = 0.3, the $\varepsilon_{r, \text{ measured}} = 10.9$ and $\varepsilon_{r, \text{ corrected}} = 11.3$.

The effective dielectric constant of a mixture has been studied by many researchers.^{7–9} Among those, Jayasundere and Smith

Fig. 4. Comparison between dielectric constant measured by the post-resonator method and calculated by Jayasundere–Smith's formula from the samples sintered at 1120 °C for 2 h.

Fig. 5. Quality factor $(Q \times f)$ and temperature coefficient of resonant frequency (τ_f) of $(1 - x)Ca_2P_2O_7 - xTiO_2$ sintered 1120 °C for 2 h as a function of TiO₂ volume fraction (vertical line represents: x = 0.5, dotted line: calculated values).

formula⁷ is selected, because the dielectric constant of inclusions (TiO₂) is larger than those of the matrix (Ca₂P₂O₇). It is an analytic formula for the effective dielectric constant of a binary mixture, derived by modifying the well-known Kerner's expression⁸ to include interactions between neighboring spheres. The developed expression, a binary system which is composed of spheres with high dielectric constant (ε_2) dispersed in a matrix with low dielectric constant (ε_1) where $\varepsilon_2 \gg \varepsilon_1$, is a function of the volume fraction of the spheres (v_2) and the matrix (v_1):

$$\varepsilon_{\text{eff}} = \frac{\varepsilon_1 v_2 + \varepsilon_2 v_2 [3\varepsilon_1/(\varepsilon_2 + 2\varepsilon_1)]}{v_1 + v_2 (3\varepsilon_1)/(\varepsilon_2 + 2\varepsilon_1)}.$$

$$(2)$$

$$\times [1 + 3v_2 (\varepsilon_2 - \varepsilon_1)/(\varepsilon_2 + 2\varepsilon_1)]$$

$$\times [1 + 3v_2 (\varepsilon_2 - \varepsilon_1)/(\varepsilon_2 + 2\varepsilon_1)]$$

The measured and calculated dielectric constant (by the Jayasundere–Smith's formula) was plotted in Fig. 4. The ε_r of $(1 - x)Ca_2P_2O_7-xTiO_2$ is well predicted by the Jayasundere–Smith formula. The Jayasundere–Smith formula was derived from a mixture of spherical inclusions, while the mixture of $Ca_2P_2O_7$ –TiO₂ has elongated grain inclusions. However, the measured data were well agreed with the calculated data by formula (2). It attribute to a large dielectric constant difference of two phases. At a composition of x = 0.3, the measured and calculated dielectric constant was 10.9 and 10.1, respectively.

3.2.2. Quality factor($Q \times f$) and temperature coefficient of resonant frequency(τ_f)

Fig. 5 shows the quality factor $(Q \times f)$ and the temperature coefficient of resonant frequency (τ_f) of the (1-x)Ca₂P₂O₇-*x*TiO₂ samples sintered at 1120 °C for 2 h. The Q (=1/tan δ) and τ_f values were calculated in the following relations as a semi-empirical model:

$$\tau_{\rm f,\,mixture} = v_1 \tau_{\rm f1} + v_2 \tau_{\rm f2}$$

$$\frac{1}{Q_{\text{mixture}}} = \frac{v_1}{Q_1} + \frac{v_2}{Q_2}$$

The above calculated $\tau_{\rm f,\ mixture}{}^{10}$ and $Q_{\rm mixture}{}^{11}$ results are also shown in Fig. 5. The Q value decreased with increasing TiO_2 content. The measured Q values agree well with the calculated values for x < 0.5. However, at $x \ge 0.5$, the Q value have a large decrease than the calculated value. According to XRD data shown in Fig. 1, unidentified secondary phase was appeared at $x \ge 0.5$. And in Fig. 3, the porosity increased as increasing TiO₂ content. The $Q \times f$ is affected by extrinsic factors such as defect concentration, impurities, grain size, and porosity. Therefore, this large deviation in $Q \times f$ value at x > 0.5 was related to an appearance of secondary phase and increase of the porosity. In the case of the τ_f , β -Ca₂P₂O₇ and rutile-TiO₂ have τ_f values of -53 and +400 ppm/°C, respectively. The measured $\tau_{\rm f}$ values increased with increasing TiO2 content and agreed well with the calculated values at x < 0.5. At the region of $x \ge 0.5$, the small deviation of the $\tau_{\rm f}$ was appeared, which was also influenced by secondary phase. In the 0.3 < x < 0.4 regions, τ_f value could be successfully reduced almost zero.

4. Conclusion

The mixture behavior and microwave dielectric properties of $(1 - x)Ca_2P_2O_7-xTiO_2$ system were investigated. It was found that $(1 - x)Ca_2P_2O_7-xTiO_2$ samples sintered at 1120 °C for 2 h were mixture of $Ca_2P_2O_7$ and TiO₂, without any observable secondary phases at x < 0.5. At the region of $x \ge 0.5$, secondary phase was appeared. The ε_r of $(1 - x)Ca_2P_2O_7-xTiO_2$ is well

predicted by the Jayasundere–Smith formula. Although unidentified secondary phase exist at $x \ge 0.5$, the ε_r value was not affected by secondary phase. In the case of Q and τ_f values, however, the $Q \times f$ and τ_f values showed deviation from the corresponding mixing relations due to unidentified secondary phase and porosity at the region of $x \ge 0.5$. At a composition of x = 0.3(volume fraction of TiO₂ = 0.09): $Q \times f = 44,000$ GHz, $\varepsilon_r = 10.9$, and $\tau_f = -11$ ppm/°C.

References

- Penn, S. J., Mc Alford, N., Templeton, A., Wang, X., Xu, M. and Schrapel, K., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. *J. Am. Ceram. Soc.*, 1997, 80(7), 1885–1888.
- Cho, S. Y., Kim, I. T. and Hong, K. S., Microwave dielectric properties and application of rare-earth aluminates. *J. Mater. Res.*, 1999, 14, 114–119.
- Bian, J. J., Kim, D. W. and Hong, K. S., Microwave dielectric properties of Ca₂P₂O₇. J. Eur. Ceram. Soc., 2003, 23, 2589–2592.
- 4. Burn. I., U.S. patent 1989, 4,845,062.
- Kaifez, D. and Guillion, P., *Dielectric Resonator*. Artech House, Norwood, MA, 1986, p. 327.
- Bosman, A. J. and Havinga, E. E., Temperature dependence of dielectric constants of cubic ionic compounds. *Phys. Rev.*, 1963, **129**, 1593– 1600.
- Jayasundere, N. and Smith, B. V., Dielectric constant for binary piezoelectric 0–3 composites. J. Appl. Phys., 1993, 73, 2462–2466.
- Kerner. E. H., The electrical conductivity of composite materials., *Proc. Phys. Soc.*, London Sec., 1956, B69, p. 802.
- Bruggeman, D. A. G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. Annalen der Physik., 1935, 24, 636.
- Paladino, A. E., Temperature-Compensated MgTi₂O₅-TiO₂ Dielectrics. J. Am. Ceram. Soc., 1971, 54, 168.
- Fukuda, K., Kitoh, R. and Awai, I., Microwave characteristics of TiO₂-Bi₂O₃ dielectric resonator. *Jpn. J. Appl. Phys.*, 1993, **32**, 4584.